ON THE APPROXIMATION OF SYMMETRIC OPERATORS BY OPERATORS OF FINITE RANK

BY SHMUEL KANIEL*

ABSTRACT

The following Theorem 1 and Theorem 2 are established. The proof utilizes the elementary properties of symmetric operators. It is shown that the symmetry condition is necessary for these theorems to hold.

In this work we shall prove the following theorem which stems from consideration of the minimal iteration method for eigenvalue problems $(1, 2)$.

THEOREM 1. Let A be a bounded symmetric operator in Hilbert space H. Let $f \in H$ $f \neq 0$ be chosen and let H_k denote the span of $f, Af, \dots, A^k f$. Let P be *the orthogonal projection on* H_k *and let B denote the restriction of PA to* H_k *.*

Then there exists an absolute constant $c(k)$ tending to zero as $k \to \infty$ which *does not depend on A nor on f so that for some* $\lambda \in \sigma(A)$ *and some* $\mu \in \sigma(B)$ *:*

(1)
$$
|\lambda - \mu| \leq c(k) ||A|| \leq \frac{2}{\sqrt{(k+1)}} \cdot ||A||.
$$

The proof of Theorem 1 depends on the following propositions:

PROPOSITION 1. If $||Af - \mu f|| \le \alpha ||f||$, then there exists $\lambda \in \sigma(A)$ so that $|\lambda-\mu|\leq \alpha.$

This is a direct consequence of the spectral decomposition theorem.

PROPOSITION 2. Let μ_i be the eigenvalues of B. Then $|\mu_i| \leq ||A||$.

This is a direct consequence of the minimax principle. It is easy to see that B is symmetric. Hence

$$
\max_{i} |\mu_{i}| = \sup_{f \in H_{k}} \frac{\left(Bf, f\right)}{\|f\|} = \sup_{f \in H_{k}} \frac{\left|\left(PAf, f\right)\right|}{\|f\|} = \sup_{f \in H_{k}} \frac{\left|\left(Af, f\right)\right|}{\|f\|}
$$

$$
\leq \sup_{f \in H} \frac{\left|\left(Af, f\right)\right|}{\|f\|} = \|A\|.
$$

PROPOSITION 3. If $p(x)$ is a polynomial having degree at most k, then $p(A)f = p(B)f$.

Received November 11, 1964.

^{*} This work was sponsored in part by NSF contract 2426.

Proof. For $i = 1, 2, \dots, k$, $A^t f \in H_k$, so by a simple induction:

$$
Aif = PAif = PA \cdot Ai-1f = PA(PA)i-1f = Bif.
$$

The passage to polynomials is trivial.

PROPOSITION 4. If B *has a multiple eigenualue, then all the eigenvalues of B belong to* $\sigma(A)$ *.*

Proof. We shall prove that in this case H is an invariant subspace of *A.* So B = restriction of *A* to H_k and hence $\sigma(B) \subset \sigma(A)$.

It is sufficient to prove that in this case the vectors $f, Af, \dots, A^k f$, are dependent because then we have for some $l \leq k - 1$

$$
A^{i+1}f=\sum_{i=0}^i\alpha_{ii}A^i f\in H_k,
$$

and we can prove inductively that

$$
A^{j}f = \sum_{i=0}^{l} \alpha_{ij} A^{i}f \in H_{k}, j = 1, 2, \cdots
$$

$$
\left(A^{j+1}f = AA^{j}f = A \sum_{i=0}^{l} \alpha_{ij} A^{i}f = \sum_{i=0}^{l-1} \alpha_{ij} A^{i+1}f + \alpha_{lj} \sum_{i=0}^{l} \alpha_{il} A^{i}f\right).
$$

So let g_1 and g_2 be two different eigenvectors corresponding to the eigenvalue μ , then some linear combination of g_1 and g_2 can be expressed by:

$$
g=\sum_{i=0}^{k-1}\alpha_iA^if,\qquad g\neq 0;
$$

so:

$$
0 = PAg - \mu g = PA \sum_{i=0}^{k-1} \alpha_i A^i f - \mu \sum_{i=0}^{k-1} \alpha_i A^i f = P \sum_{i=1}^{k} \alpha_{i-1} A^i f - \mu \sum_{i=0}^{k-1} \alpha_i A^i f
$$

=
$$
\sum_{i=1}^{k-1} (\alpha_{i-1} - \mu \alpha_i) A^i f + \alpha_{k-1} A^k f - \mu \alpha_0 f.
$$

Thus the linear dependence of $A^i f$, $i = 0, 1, \dots, k$ is proved since not all coefficients in the last sum are zero. This leads to a contradiction and the proposition is established.

Proof of Theorem 1. In view of Proposition 4 it is sufficient to consider the case where μ_i , the eigenvalues of *B*, are distinct. So let g_i , $i = 1, \dots, k + 1$ be an orthonormal base of eigenvectors corresponding to the eigenvalues μ_i . Let $f = \sum_{i=1}^{k+1} \beta_i g_i$. We shall prove that $\beta_i \neq 0$. Indeed, H_k is spanned by

$$
A^{j}f = B^{j}f = \sum_{i=1}^{k+1} \beta_{i}\mu_{i}^{j}g_{i}, \quad j = 0, 1, \dots, k.
$$

If for some $m: \beta_m=0$, it follows that $A^{\,j}f$ are orthogonal to g_m or that H_k is orthogonal to g_m which is impossible.

Consider now the following polynomials:

$$
q_j(x) = \sum_{\substack{n=1 \ n \neq j}}^{k+1} c_{nj} \frac{\prod\limits_{i \neq j,n} (x - \mu_i)}{\prod\limits_{i \neq j,n} (\mu_n - \mu_i)}, \quad j = 1, 2, \cdots, k+1,
$$

where $|c_{ni}| = |1/\beta_n|$ and the sign of c_{ni} is chosen so that for any *n* and *j*:

$$
\beta_j c_{nj} \frac{\prod\limits_{i \neq j,n} (\mu_j - \mu_i)}{\prod\limits_{i \neq j,n} (\mu_n - \mu_i)} > 0.
$$

The polynomials $q_j(x)$ satisfy:

(2)
$$
\left|\beta_n q_j(\mu_n)\right|=1, \quad n \neq j.
$$

We shall prove that:

(3)
$$
\max_{j} |\beta_j q_j(\mu_j)| \geq k.
$$

In fact:

$$
\sum_{j=1}^{k+1} \beta_j q_j(\mu_j) = \sum_{\substack{n,j=1 \ n \neq j}}^{k+1} \beta_j c_{nj} \frac{\prod\limits_{i \neq j,n} (\mu_j - \mu_i)}{\prod\limits_{i \neq j,n} (\mu_n - \mu_i)}
$$

\n
$$
\geq (k+1)(k)^{(k+1)(k)} \sqrt{\sum_{\substack{n,j=1 \ n \neq j}}^{k+1} \frac{\beta_i}{\beta_n} \frac{\prod\limits_{i \neq j,n} |\mu_j - \mu_i|}{\prod\limits_{i \neq j,n} |\mu_n - \mu_i|}} = (k+1)(k),
$$

because the expression under the root sign is symmetric in j and n .

Suppose that $\left|\beta_m q_m(\mu_m)\right| \geq k$ and consider the vector $g = q_m(A)f$. Since $q_m(x)$ has the degree $k - 1$, it follows that $q_m(A)f = q_m(B)f$ and:

$$
g=\sum_{i=1}^{k+1} q_m(\mu_i)\beta_i g_i.
$$

By (2) and (3)

$$
\|g\|^2 = \sum_{i=1}^{k+1} |q_m(\mu_i)\beta_i|^2 = \sum_{i \neq m} |q_m(\mu_i)\beta_i|^2 + |\beta_m q_m(\mu_m)|^2 \geq k + k^2.
$$

Consider now $Ag - \mu_m g$. Since the degree of $p(x) = (x - \mu_m)q_m(x)$ is k, we have:

$$
\|Ag - \mu_m g\|^2 = \|(A - \mu_m I)q_m(A)f\|^2 = \|(B - \mu_m I)q_m(B)f\|^2
$$

=
$$
\sum_{i=1}^{k+1} |(\mu_i - \mu_m) \cdot q_m(\mu_i) \cdot \beta_i|^2 \leq k \max_i |\mu_i - \mu_m|^2 \leq 4k ||A||^2.
$$

So:

$$
\| A g - \mu_m g \| \leq \frac{2}{\sqrt{(k+1)}} \| A \| \| g \|
$$

which by Proposition 1 means that there exists $\lambda \in \sigma(A)$ so that (1) holds. Thus the proof is complete.

REMARK. This estimate has no significance from the numerical analysis point of view. In general the estimate will be much better provided that some additional information about $\sigma(A)$ is given. For so-called "practical" estimates the reader is referred to [2].

Let us now apply Theorem 1 to get:

THEOREM 2. *Under the conditions of Theorem 1 the eigenvalues of PA can be ordered so that for any* μ_i , $j = 1, 2, \dots, k$ there exists $\lambda(j) \in \sigma(A)$:

$$
|\mu_j - \lambda(j)| \leq \frac{2}{\sqrt{(k+2-j)}} ||A||.
$$

REMARK. This means that for large k most of the eigenvalues of B will be close to points in the spectrum of A. As in Theorem 1 the estimates depend on k and $||A||$ only.

Proof. As in Theorem 1 it is sufficient to consider the case where the eigenvalues of B are distinct. We shall prove the theorem by induction. Suppose that the theorem is true for $j = 1, 2, \dots, m$ and consider the vector

$$
f_m = \prod_{j=1}^m (A - \mu_j I) f.
$$

Denote by H_k^m the span of $f_m, Af_m, \dots, A^{k-m}f_m$; by P_m the projection on H_k^m , and by B_m the restriction of P_mA to H_k^m .

By Theorem 1 there exists $\mu \in \sigma(B_m)$ and $\lambda \in \sigma(A)$ so that:

(5)
$$
|\mu - \lambda| \leq \frac{2}{\sqrt{k-m+1}} ||A||.
$$

The induction will be complete if we show that $\mu \in \sigma(B)$ and $\mu \neq \mu_i, i = 1, 2, \dots, m.*$ Indeed, by Proposition 3 for $i=0,\dots,k-m$:

$$
A^{i}f_{m} = A^{i} \prod_{j=1}^{m} (A - \mu_{j}I)f = B^{i} \prod_{j=1}^{m} (B - \mu_{j}I)f = \sum_{l=m+1}^{k+1} \beta_{l}\mu_{l}^{i} \prod_{j=1}^{m} (\mu_{l} - \mu_{j}) \cdot g_{l}.
$$

This means that $A^{i}f_m$, $i = 0, 1, \dots, k-m$ are spanned by g_j , $j = m+1, \dots, k+1$. $Aⁱf_m$ are independent because $Aⁱf$, $i = 0, 1, \dots, k + 1$ are independent; therefore

^{*} In this case we define $\mu = \mu_{m+1}$, establishing (4) for $m + 1$.

by dimension argument H_k^m is the span of g_j , $j = m + 1, \dots, k + 1$. Hence B is invariant in H_k^m and the eigenvalues of B_m coincide with $\mu_{m+1}, \dots, \mu_{k+1}$ which are different from μ_1, \dots, μ_m . Thus the proof is complete.

The condition that A is symmetric is necessary as the following example will show. Define H to be the space of double sequences $(\cdots, a_{-i}, \cdots, a_0, \cdots, a_i, \cdots)$ so that $\sum_{i=-\infty}^{\infty} |a_i|^2 < \infty$. Define A to be the left shift operator, i.e. if ϕ_i is a unit vector $(m,0, ..., 0, 1_i, ..., 0, ...)$ - $\infty < i < \infty$, then $A\phi_i = \phi_{i-1}$. A is unitary so for any $\lambda \in \sigma(A): |\lambda| = 1.$

Let $f = \phi_k$; then H_k will be spanned by $\phi_0, \phi_1, \dots, \phi_k$. The point 0 is the only point in $\sigma(B)(\phi_0)$ only is an eigenvector so $|0 - \lambda| = 1$ contrary to the theorem's conclusion.

REFERENCES

1. D. K. Faddeev and V. N. Faddeeva, *Computational Methods of Linear Algebra,* Translated from Russian by R. C. Williams, W. H. Freeman and Co., San Francisco and London (1963). 2. S. Kaniel, *Estimates for some computational techniques used in linear algebra,* to appear.

STANFORD UNIVERSITY STANFORD, CALIFORNIA